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h i g h l i g h t s g r a p h i c a l a b s t r a c t 

• Modeling of an existing coal-fired power 
plant with 360 MW in Brazil using real 
data. 

• A combined approach of power plant 
design with artificial neural networks 
(ANN). 

• Identification of the most relevant pro- 
cess parameters of the steam generator. 

• Two Design of Experiment models are 
applied to compare the performance. 

• Definition of the best operating ranges 
using Response Surface Methodology 
(RSM). 
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a b s t r a c t 

The operation of complex systems can drift away from the initial design conditions, due to environmental condi- 
tions, equipment wear or specific restrictions. Steam generators are complex equipment and their proper opera- 
tion relies on the identification of their most relevant parameters. An approach to rank the operational parameters 
of a subcritical steam generator of an actual 360 MW power plant is presented. An Artificial Neural Network - 
ANN delivers a model to estimate the steam generator efficiency, electric power generation and flue gas outlet 
temperature as a function of seven input parameters. The ANN is trained with a two-year long database, with 
training errors of 0.2015 and 0.2741 (mean absolute and square error) and validation errors of 0.32% and 2.350 
(mean percent and square error). That ANN model is explored by means of a combination of situations proposed 
by a Design of Experiment - DoE approach. All seven controlled parameters showed to be relevant to express both 
steam generator efficiency and electric power generation, while primary air flow rate and speed of the dynamic 
classifier can be neglected to calculate flue gas temperature as they are not statistically significant. DoE also 
shows the prominence of the primary air pressure in respect to the steam generator efficiency, electric power 
generation and the coal mass flow rate for the calculation of the flue gas outlet temperature. The ANN and DoE 
combined methodology shows to be promising to enhance complex system efficiency and helpful whenever a 
biased behavior must be brought back to stable operation. 
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Nomenclature 

DoE Design of Experiments 
ANN Artificial Neural Network 
𝐸𝑥𝑝 Expected (actual value) 
𝑂𝑏𝑠 Observed (calculated with the ANN) 

MAE Mean absolute error 
MPE Mean percentual error 
MSE Mean square error 
𝑘 Number of factors 
𝑁 Total number of essays 
𝐶 𝑂 Center points 

LHV Lower heating value 
KKS equipment identification codes 
F1 Primary air flow rate, kg/s 
F2 Pulverized coal outlet temperature, ◦𝐶 

F3 Speed of the dynamic classifier, rpm 

F4 Excess O 2 , % 

F5 Primary air pressure, mbar 
F6 Secondary air pressure, mbar 
F7 Coal mass flow rate, ton/h 
R1 Flue gas outlet temperature, ◦𝐶 

R2 Steam generator efficiency, % 

R3 Electric power generation, MW 

DCS Distributed Control System 

N HL Number of neurons in the hidden layer 
N input Number of neurons in the first layer 
N output Number of neurons in the last layer 

. Introduction 

Coal fuels approximately 40% of the world’s electric supply, which
as been growing by nearly 900 GW since 2000 [1,2] . The superheated
ater steam cycle is the most common technical solution for solid fu-

ls like coal, nuclear and as well as renewable sources, such as sugar
ane and solid waste, which increase the interest on enhancing plant
erformance and safety operation. 

Operational data from coal-fired power plants are usually contin-
ously acquired and available, allowing to better understand the sys-
em behaviour. Approaches based on pattern recognition and paramet-
ic correlation can allow for process optimization by aligning available
ata, efficient management and strategy, based on constant monitoring
3,4] . 

Different levels of modelling steam generators have been developed
ased on physical phenomena, but data based algorithms showed to
e an attractive option as they are capable of modelling sophisticated
ystems with lesser effort but keeping their complexity representation.
hese models are trained with large amounts of actual data to find suf-
cient patterns that enable accurate decisions about the system param-
ters [5] . Studies have already succeeded in modeling steam generators
y machine learning techniques. Romeo and Gareta [6] applied Artifi-
ial Neural Networks (ANN) to develop a methodology for a biomass
oiler monitoring, concluding that the ANN can predict the operational
arameters, as well as the fouling state of the boiler. Rusinowski and
tanek [7] used two ANN to calculate the flue gas and unburned losses.
 model to predict a soot-blowing routine by ANN was presented by Shi
t al. [8] . Also other authors used it to precidct boiler emissions like
Ox [9–11] . 

ANN has been used to the integration of steam power plant com-
onents aiming to improve the overall performance of power plants
12,13] . ANNs were applied to entropy generation minimization of a
ombined heat and power system [14] . Also, the power production of a
ower plant was predicted using ANN considering as input the ambient
emperature [13] . The real data on the amount of the generated steam
 w  

2 
n the existing system boilers was compared to the results of the model
nd results were used to analyze coal consumption savings and their
mpact on the environment. Navarkar et al. [15] studied the relation-
hip between load cycling and the variations of the superheater outlet
ressure, reheater inlet temperature, and flue gas temperature at the air
eater inlet. An ANN trained with the data of the previous 10 years was
ble to predict these values for the next 10 h. 

The studies found that apply ANN to steam generators focus on ob-
aining an architecture that provides a certain output with low value for
he loss function, but there is little concern about how to implement the
esults in an operation.In this context, an ANN model linked with the
ontrol system of a power plant can guide the operator’s decision mak-
ng which will ensure an increase in efficiency along with the plant’s
tability.To enable the application of the model that aims to improve
he operation or efficiency of a steam generator, it is necessary to study
he controllability and impact of the parameters used as input of the
odel. 

As an auxiliary tool for assessing any system behavior, the statistical
ethodology known as Design of Experiments – DoE enables to investi-

ate cause and effect relations and to identify the influence of the input
arameters on the system responses. Parameters can be individually an-
lyzed and also their crossed interactions, allowing to propose models
hat can be used for improvements and support decision making [16,17] .
he DoE can be applied in a wide range of processes. Kanimozhi et al
18] applied DoE and ANN to model and validate a thermal energy stor-
ge system, achieving the ranking factor for the charging process. Choi
t al. [19] used DoE to identify and study the effect from controlling
ariables on thermal deformation in automative body parts. 

The literature on power plants shows that it is possible to identify
nd model their behavior of these systems, but their operation in prac-
ice remains a field of development. The operation is subject to environ-
ental factors, sensitivity to input variations, unexpected events and
uman aspects, which generate the need to propose coordinated and
tandardized actions. Based on this observation, this article proposes a
ethodology for ranking operating parameters that indicates ordered

ctions to maintain systems performance and to assure operational sta-
ility. The methodology is based on statistical analysis by applying a
oE approach to a system model built by neural networks. The case

tudy presented is an actual 360 MW coal-fired power plant, but it can
e extended to systems with identified control parameters. 

. Artificial Neural Network – ANN 

The ANN gathers information from the environment through data.
he Multi-Layer Perceptron (MLP) architecture houses an input layer, an
utput layer, and intermediate layers called ”hidden ” layers. The MLP
odel stands out for three main characteristics: nonlinear activation

unction, hidden neurons, and high degree of connectivity. Hidden neu-
ons are responsible for the absorption of progressive knowledge, allow-
ng the execution of more complex tasks [20–22] . 

The metrics to evaluate the ANNs configuration performance are the
ean absolute error MAE, the mean percentual error MPE, and the mean

quare error MSE, as used by [13] , are presented in Eq. (1–3) : 

𝐴𝐸 = 

1 
𝑛 

∑𝑛 

𝑖 =1 
|||𝑋 𝑒𝑥𝑝 − 𝑋 𝑜𝑏𝑠 

||| (1) 

𝑃 𝐸 = 

1 
𝑛 

∑𝑛 

𝑖 =1 
||||
𝑋 𝑒𝑥𝑝 − 𝑋 𝑜𝑏𝑠 

𝑋 𝑒𝑥𝑝 

||||
(2) 

𝑆𝐸 = 

1 
𝑛 

∑𝑛 

𝑖 =1 
|||𝑋 𝑒𝑥𝑝 − 𝑋 𝑜𝑏𝑠 

|||
2 

(3) 

ith 𝑋 𝑒𝑥𝑝 the output expected or actual value and 𝑋 𝑜𝑏𝑠 its value calcu-
ated with the ANN. 

. Design of Experiments - DoE 

DoE is a statistical methodology for studying any kind of system
hose responses varies as a function of one or more independent pa-
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ameters, called controllable factors, based on analysis of variance
ANOVA). The methodology allows planning experiments to collect ap-
ropriate data out of actual or modeled processes and systems. Changes
n the average response due to factor swiping within a defined range or
evel is defined as an effect. Factors vary within ranges according to a
efined number of levels which includes at least the level high and low.
n interaction among factors is identified when the effect of one factor
n the response depends on the level of some other factor. Interactions
an occur between two, three, or more factors but three-factor interac-
ions and beyond are usually assumed to be insignificant. The parameter
ignificance is determined through hypothesis testing [16,17,23] . 

The three principles of experimental design, namely randomization,
eplication and blocking, can be utilized to improve the efficiency of
xperimentation, applied to reduce or even remove experimental bias
17] . The purpose of randomization is to remove all sources of extra-
eous variation which are not controllable in real-life settings. Replica-
ion means repetitions of an entire experiment or a portion of it, under
ore than one condition. Blocking is a method of eliminating the ef-

ects of extraneous variation due to noise factors and thereby improving
he efficiency of experimental design. The idea is to arrange similar or
omogeneous experimental runs into groups, called blocks [16,23] . 

Full factorial design is an important class of assessment procedure,
hich enables to evaluate individual effects and possible interactions
f several factors, instead of the one-factor-at-a-time method. Its high
umber of combinations can lead to expensive and time consuming ex-
1324.0000

300.0000

300.0000

700.0000

1323.0

BURN

SH2

Blowdown

OFA (a)

WIND
BOX

SUB-STO
R

Secondary
Air

Primary Air

Pulverized Coal (b)
+ Primary Air (c)

Pulverized Coal (d)
+ Primary Air (e)

Primary Air

Fig. 1. Steam generator schematic 

3 
eriments, that can be reduced by choosing a Box-Behnken design, as
ne possible option. The designed number of essays N for each method-
logy, considering k factors, and 𝐶 𝑂 center points, is shown in Eq. (4) for
 full three level factorial design, and in Eq. (5) for a Box-Behnken design
17,24] : 

 = 3 𝑘 (4) 

 = 2 𝑘 ( 𝑘 − 1) + 𝐶𝑜 (5) 

. System description 

The PECEM coal-fired power plant was chosen to perform an assess-
ent whose goal was to select and rank system parameters in order

o better operate the plant. The power plant is located near the ocean
oast of the State of Ceará, Brazil, composed of three identical and in-
ependent power groups. Each group is designed to produce 360 MW
ut of Colombian coal with a lower heating value (LHV) about 25,750
J/kg, burned on a sub-critical steam generator. The furnace operates
nder balanced drought conditions; with natural circulation and steam
eheat. A parallel back end splits flue gas flows through the primary su-
erheater and the reheater exchangers [25,26] . A schematic layout of
he steam generator and its coupled coal mills is presented in Fig. 1 . 

Preheated air stream coming from an external heat recovery device
t approximately 300 ◦C is split into two feeding paths, the primary and
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econdary air flows. Primary air is admitted in the mill to both perform
oal drying and transport it to the steam generator burners. Each mill
eeds a burner line of six pulverized coal combustors or burners, placed
n independent wind boxes. The pulverized fuel and the primary air
re introduced into the furnace via a combination of twenty four Low
Ox Axial Swirl Burners (letters b to g in Fig. 1 ) according to the load

evel, under sub-stoichiometric conditions. Combustion is completed on
he furnace upper zone by twelve over fire air ports (OFAs, ports a in
ig. 1 ).The feedwater arrives at 276 æC and 168 bara, the output super-
eated steam at 538 æC drives the vapour cycle. 

. Methodology 

The methodology strategy to select and rank the input parameters
ccording to their order of significance is presented in Fig. 2 . 

Data processing is priorly performed in the first step to search for and
dentify the existence of special patterns, outliers, variation, and distri-
ution [23] . An statistical test is performed to analyze the parameters
nd their respective ranges of operation. The input parameters are se-
ected based on their controllability, which means, they can be directly
mpacted by the actions of the unit control operator. 

The second step is dedicated to system modeling through ANNs.
NNs hyperparameters (number of hidden layers, number of hidden
eurons per each hidden layer, and activation functions) are defined
hrough an iterative approach that is intended to best describe the prob-
em at hand. Hyperparameter configurations are tested by a trial and
rror method guided by doubling the number of neurons in the hidden
ayers on each try. The first ANN was developed with the simplest con-
guration, a single hidden layer. New networks were further on tested
y doubling both the number of hidden layers and the number of neu-
ons per layer. The simplest ANN with the best results is selected. The
rrors for the test and validation datasets are compared, in order to
chieve the lowest error values for both datasets and ensure that there
s no overfitting. 
1
Data Acquisition

Selection and pre-processing
of the data basis

2
System Modeling

ANN used to model the
steam generator

3
Statistical Analysis
DoE mothodology appliled

to the ANN

4
Parameter Selection
Significance of the parameters

through hypothesis testing

5
Ranking

Ranking of the parameters by
order of importance

6
Operational Ranges

Definition of the best
operating ranges

ig. 2. Methodology strategy to select and rank the steam generator operational 
anges. 
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4 
The selected ANN algorithm is employed in the third step to evaluate
he steam generator behavior by applying the DoE methodology. In the
resent work, both the three full level factorial and the Box-Behnken
esigns were tested. Parameter selection in the fourth step can be per-
ormed out of the results obtained in the prior step by hypothesis testing
sing ANOVA. The residual plots were checked to guarantee the ANOVA
ssumptions of a normal distribution, independence, and constant vari-
nce. 

In step 5, the mathematical model produced by the DoE method was
sed to rank the parameters by order of importance according to each
odel response. Predicted coefficient of determination ( R 

2 ) was used to
valuate the prediction quality of the DoE mathematical model. Finally,
he last step identifies the operating ranges in which the factors lead to
he best possible system response. 

. Results and discussions 

The controlled parameters were identified by means of three parallel
nd complementary sources: actual data and from the power station la-
eling system (KKS), list of parameters considered as significant to con-
rollable losses on textbooks and technical standards, and advising from
he PECEM in site technical staff. The list with 7 relevant controllable
arameters and 3 system responses is presented in Tab. 1 . 

The primary air flow rate (F1) performs two prior functions, namely
o dry the raw coal and convey it to the burners, already pulverized,
hose amount is controlled by (F7), the coal mass flow rate. The speed
f the dynamic classifier (F3) allows to select the fuel granulometry or
ulverization level. Pulverized coal outlet temperature (F2) is measured
t the mill outlet and it is related to the coal drying process. The steam
enerator is divided into two burner volumes, the sub-stoichiometric re-
ion with 4 rows of 6 burners each and the burnout zone, as showed in
ig. 1 . The secondary air flow rate guaranties sub-stoichiometric com-
ustion conditions, but it is not directly manipulated by the operator,
hich explains its exclusion as an ANN input. 

The combustion total air is the summation of the primary, secondary,
nd over-firing air flows, and its global stoichiometry is kept approxi-
ately constant about 1.2. The excess of O2 (F4) is measured at the

urnout zone and it indicates the global stoichiometry of the combustion
rocess. Hot air flow from the air preheater serves both the primary and
econdary streams via two independent systems, called the crossover
ucts, in which we have as the input of the ANN the primary and sec-
ndary air pressure (F5 and F6). The output parameters flue gas outlet
emperature (R1), steam generator efficiency (R2), and electric power
eneration (R3) were chosen for the system behavior representation. 

The power plant Distributed Control System (DCS) continuously ac-
uired the half-hour mean values of the parameters data during opera-
ion. The survey of equipment uncertainty data, measurement interval
nd calibration documents were carried out for all parameters. The DCS
ecords only a variation above 0.5% of the previous value. 

The complete dataset runs from January 2018 up to May 2019 in
his work. Negative and null values were removed and then filtered with
espect to the 340–365 MW range of electric power generation. This fil-
er resulted in a set of 6033 records, which represents approximately
0% of the original dataset. The dataset was randomized and divided
nto 70% training, 25% testing, and 5% for validation [20] . Param-
ters were standardized with respect to their correspondent standard
eviation. 

ANNs were developed (step 2) using the Keras [27] program-
ing interface running on top of the Tensorflow machine learning

ibrary [28] . 
The topology of the ANN hyperparameters was evaluated by per-

orming combinations of 8, 16, 32, 64, 128, and 256 hidden neurons
pplied to each of the 4 hidden layers. The tested activation functions
ncluded ReLU (Rectified Linear Unit) and Tanh (hyperbolic tangent).
eLu is a typical activation function for MLP, especially to guarantee

hat the output will always be positive [21] . The investigation process
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Fig. 3. Chosen topology for the ANN - the parameters details are presented in Table 1 . 

Table 1 

Input and output parameters for the ANN model. 

Input (controllable parameters) Unit 

Primary air flow rate F1 kg/s 

Pulverized coal outlet temperature F2 ◦C 

Speed of the dynamic classifier F3 rpm 

Excess O 2 F4 % 

Primary air pressure F5 mbar 

Secondary air pressure F6 mbar 

Coal mass flow rate F7 ton/h 

Outputs (system responses) Unit 

Flue gas outlet temperature R1 ◦C 

Steam generator efficiency R2 % 

Electric power generation R3 MW 
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tarted with the simplest ANN with 8 hidden neurons and one hidden
ayer. After that, the number of neurons was doubled as well as the hid-
en including a set of different combinations until 256 hidden neurons
nd 4 hidden layers. The main idea is to achieve the simplest ANN ca-
able to represent our problem in analysis. Table 2 presents some of the
ested ANNs. 

The selected ANN was built with one input layer, with 𝑁 𝑖𝑛𝑝𝑢𝑡 = 7 ,
orresponding to F1–F7, as shown in Table 1 , four hidden layers of
 𝐻𝐿 = 128 neurons each, and one output layer, with 𝑁 𝑜𝑢𝑡𝑝𝑢𝑡 = 3 , cor-

esponding to outputs (system responses). The ANN architecture is pre-
ented in Fig. 3 . 

Step 3 concerns the statistical analysis of the steam generator behav-
or simulated with the aid of the ANN algorithm. The ANN statistical
etrics MAE and MSE were 0.2015 and 0.2741 with respect to the test
ata set, respectively. DoE was applied to the ANN according to the op-
rational ranges of the selected input parameter as described in Tab. 3 .

The operating ranges were determined according to the plant history
nd with the assistance of the PECEM technical team to provide safe and
table conditions. Simple data analysis did not allow to indicate if the
ower plant was running under expected conditions. Variability on coal
oisture due to the rain, or unusual equipment behavior, for instance,

annot be observed with this approach. Thus, experimental investiga-
ion through DoE becomes essential because it performs a comprehen-
ive analysis on the coupling of the operational parameters. Parameter
alues were kept within the range limits of regular operation. The plant
NN algorithm was tested by both the Box-Behnken and the three level
ull Factorial designs, and details are shown in Table 4 . 
5 
The three-level full factorial approach required a larger amount of
ssays when compared with the Box-Behnken design. Even so, the ANN
ast response enabled to perform both approaches, presented hereafter
o clarify their individual advantages. The first assessment was per-
ormed to identify the effect of each input parameter on the system
esponses, displayed separately. 

Results for the flue gas outlet temperature R1 are shown in Fig. 4 for
oth the Box-Behnken and three-level full factorial approaches. 

Parameter behavior and tendencies were quite the same when com-
aring the models. Relations were found to be close to linear for F4 and
6, and non-linear for F2, F5, and F7. Inputs F1 and F3 showed to be
tatistically not significant (gray boxes) with respect to the flue gas out-
et temperature, according to the Box-Behnken model (a), whereas all
arameters are relevant to the three-level full factorial model (b). This
valuation was made using hypothesis tests with a 95% confidence level.
esults out of the Box-Behnken model are displayed with smooth curves
hile the three-level full factorial shown can only linearly link dots. Sig-
ificant factors and interactions were selected by searching terms with
 -value < 𝛼= 0.05 according to the ANOVA. The high order terms and
he interactions between different input parameters were eliminated
rst and the final model is a result of several model reduction itera-
ions. The Table 6 in the Appendix presents the Analysis of variance
ANOVA) for the complete model with all linear, square, and interaction
erms. 

A similar assessment was performed for the steam generator effi-
iency R2 whose results are presented in Fig. 5 . 

Both methods showed statistical significance and linear relationships
etween the parameters with respect to the steam generator efficiency
2. Direct correlations were found for parameters F2 and F4 and inverse
nes for all others in respect to R2. The assessment of the electric power
eneration R3 is presented in Fig. 6 . 

The difference between the two DoE designs is emphasized due to the
on-linearity behavior of the parameters with respect to R3. F2 and F7
isplayed a positive relationship with the response while F1 displayed
 negative relationship. F5 presented the highest influence on the re-
ponse, noticeable on both approaches due to its span. 

The next analysis of the fourth step ( Fig. 2 ) consists of analyzing
he interactions among factors, identified when the effect of one factor
n the response depends on the level of some other factor. The present
tudy focused on the analysis of 6-way interactions for the three-level
ull factorial design and 2-way interactions for the Box-Behnken design.
ll the 2-way interactions are presented in Figs. 7–9 . 



L.W. Vieira, A.D. Marques, P.S. Schneider et al. Energy and AI 3 (2021) 100040 

Table 2 

Subset of the tested ANNs - Backpropagation learning algorithm and Multi-Layer Perceptron network type for 200 
epochs with a batch size of 256. 

ANN model 1 2 3 4 

Hidden neurons 64 - 64 -64 64 - 64 -64 128 - 128 - 128 - 128 16 - 32 - 32 - 32 

Hidden layers 3 3 4 4 

Activation function ReLU Tanh ReLU Tanh - RelU 

Training dataset size 4223 4223 4223 4223 

Testing and validation dataset size 1810 1810 1810 1810 

MAE train 0.2804 0.2505 0.1263 0.3447 

MAE test 0.4287 0.3077 0.2741 0.388 

MSE test 0.3537 0.2174 0.2015 0.4343 
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Fig. 4. Main effects of the controlled parameters on the flue gas outlet temperature R1 with (a) Box-Behnken and (b) Three level full factorial. 
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Fig. 5. Main effects of the controlled parameters on the steam generator efficiency R2 with (a) Box-Behnken and (b) Three level full factorial. 
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Fig. 6. Main effects of the controlled parameters on the electric power output R3 with (a) Box-Behnken and (b) Three level full factorial. 

Table 3 

Model input parameters with their ranges selected for the Design of Experiments 
(DoE) project. 

F1 ∗ F2 ∗ F3 ∗ F4 F5 F6 F7 

Low level 24 65 80 2.00 10.0 51 27.0 

Intermediate Level 26 75 95 2.75 18.5 62 38.5 

High level 28 85 110 3.50 27.0 73 50.0 

Unit kg/s ◦C rpm % mbar mbar ton/h 

∗ Parameter refers to the mills. 

Table 4 

Design of Experiments operational details. 

Box-Behnken 

Number of factors k 7 Replication 1 

Number of essays 62 Total number of essays N 62 

Number of blocks 1 Center points C 𝑂 6 

Three Level Full Factorial 

Number of factors k 7 Replication 1 

Number of essays 2187 Total number of essays N 2187 

Number of blocks 1 Center points C 𝑂 0 
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Fig. 7. Interaction plot for the response flue gas outlet temperature (R1). 
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Fig. 8. Interaction plot for the response steam generator efficiency (R2). 
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Table 5 

Summary of the coefficient of determination 𝑅 

2 . 

Box-Behnken Three level full factorial 

R1 R2 R3 R1 R2 R3 

R 2 79.46% 81.66% 91.51% 99.79% 99.93% 99.85% 

R 2 adjusted 75.43% 77.63% 87.67% 99.26% 98.79% 99.32% 

R 2 predictive 65.42% 72.20% 78.44% 97.32% 79.33% 96.88% 
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Fig. 10. Parameter ranking according to their impact on the flue gas outlet tem- 
perature (R1), steam generator efficiency (R2), and electric power generation 
(R3) responses. 
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The crossing of the lines indicates that the interaction is significant,
ince the change in the level of the factor caused a change in the be-
avior of the other factor, altering its impact on the output. The lev-
ls are represented by the colors blue (low level), red (intermediate
evel), and green (high level). The behavior of the pulverized coal out-
et temperature (F2) changes according to the three levels of the pri-
ary air pressure (F5). Based on the graph of F2xF5 ( Fig. 7 ), if F5 =
0mbar, when F2 increases the output flue gas outlet temperature (R1)
lso increases. On the other hand, if F5 = 18.5mbar or F5 = 27.0mbar,
f F2 increases the output R1 decreases. The primary air pressure is
irectly related to the entry of primary air into the mill, which per-
orms the drying of the coal and increases its temperature. The same
ccurs for the interaction between secondary air pressure (F6) and coal
ass flow rate (F7). If F6 = 51mbar, as F7 increases the response R1
ecreases. 

The coal mass flow rate (F7) presents significant interactions with
hree other factors, namely the primary air flow rate (F1), speed of the
ynamic classifier (F3), and secondary air pressure (F6). The impact on
fficiency is proportional to the amount of coal the primary air needs to
rag to the burners. It is possible to notice that the efficiency and per-
ormance of the steam generator are directly related to the performance
f the mills. 

The electric power output is the response with the greatest influence
f cross-terms of parameters interaction. This response varies according
o the whole power plant performance and for this reason, interactions
re more significant. 

The Tab. 5 presents the results of the coefficient of determination
 𝑅 

2 ) as the prediction quality of the model considering Box-Behnken and
hree-level full factorial design, regarding each of the three responses:
ue gas outlet temperature (R1), steam generator efficiency (R2), and
lectric power generation (R3). 

The adjusted R-squared takes into account the number of predictors
factors) in the model, and it is lower than the R-squared. The predictive
-squared indicates how the model predicts the response for new obser-
ations. According to Tab. 5 , the three-level full factorial displayed the
ighest values for the squared correlation coefficients. This result was
xpected due to the robustness of this design, which required 35 times
ore essays when compared to Box-Behnken (see Table 4 ). Dealing with

n experimental approach, the number of essays to be considered can
e a crucial element to implement the study or not. For this reason, the
omparative analysis was carried out, in order to check the capability
f Box-Behnken design to represent model tendency despite the huge
ifference in the required number of essays. 

Hypothesis testing revealed the significance of each control param-
ter, which showed that the response of the flue gas outlet temperature
1 was not affected by the parameters F1 and F3, even though responses
2 and R3 were found to be affected by all parameters. The next step of

he methodology concerned the parameter ranking by order of impor-
ance, as presented in Fig. 10 . 

The scale from 1 to 7 classifies the parameters in order of decreasing
mportance. The ranking order was quite variable as the positions of the
arameters vary according to the response. Among the set of studied
arameters, the coal mass flow rate (F7) presented itself as the most in-
uential parameter for the flue gas outlet temperature (R1) response. In
ontrast, the primary air pressure (F5) was found to be the most impor-
ant parameter for both the steam generator efficiency (R2) and electric
8 
ower generation (R3). The primary air flow rate (F1) and speed of the
ynamic classifier (F3) were not statistically significant for the flue gas
utlet temperature (R2), and, therefore, were not presented in the rank-
ng. 

Since this is a problem applied to a real steam generator, make pro-
ess controls adjustments, based on process history and parameter rank-
ng, enables the right insight into all variability issues that interplay
long the process. Such information provides guidance for engineers and
perators to perform changes aiming at better operating conditions. 

The last step of the proposed methodology consists on defining the
perating ranges corresponding to the best response condition within
he ranges defined in Table 3 . That was performed using a Response
urface Methodology through Box-Behnken design since the previous
nalyses evidenced the same results tendency for Box-Behnken and three
ull factorial projects. 

The contour plots presented in Fig. 11 represent the responses ranges
ased on the most impacting parameters. Two parameters for each re-
ponse were selected while the others were kept constant. The graphics
re represented by ranges of the response where the light green regions
tand for the higher values achievable by each response considering the
imits of the inputs. 

The best conditions given by different configurations seek to achieve
 minimum value for R1 and a maximum value for R2 and R3. The
on-linear relationship of the parameters F2 and F7 with R1 reflects
n its contour plot in Fig. 11 ( 𝑎 ) . For R2 and R3, the linear relation-
hips are maintained as shown respectively in Fig. 11 ( 𝑏 ) and ( 𝑐) . Each
raphic contains the parameters ranges according to Tab. 3 . It must be
oted that for the linear relationships the increase of the input con-
rol parameters implicates the increase of the response. On the other
and, when dealing with a non-linear relationship as seen in Fig. 11 ( 𝑎 )
here can be more than one region for the maximum response. In this
ase, the maximum possible can be achieved by the combination of low
alues for both F2 and F7 or low values of F7 and high values of F2.
learly such results may be incorporate into the power plant control
rocedures. 

The savings due to the increase in efficiency can be calculated
hrough the efficiency equation by the direct method [29] for the steam
enerator. A 1.02 % efficiency gain leads to a saving up to 12 , 000 tons
f coal per year and can reduce up to 3% of CO 2 emissions [30] . 



L.W. Vieira, A.D. Marques, P.S. Schneider et al. Energy and AI 3 (2021) 100040 

Fig. 11. Contour plots to the responses flue gas outlet temperature R1(a), steam 

generator efficiency R2 (b), and electric power generation R3 (c). 
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Table 6 

Analysis of variance (ANOVA) for the complete model with all linear, 
square and interactions terms for the response R1 through Box-Behnken 
Design. 

Source DF Adj SS Adj MS F -Value P -Value 

Model 35 10935.6 312.45 5.98 0 

Linear 7 5511.7 787.39 15.07 0 

P1 1 62.8 62.83 1.2 0.283 

P2 1 22.5 22.49 0.43 0.517 

P3 1 162.5 162.47 3.11 0.090 

P4 1 234 234.03 4.48 0.044 

P5 1 1.20 1.16 0.02 0.883 

P6 1 279.3 279.27 5.35 0.029 

P7 1 4749.50 4749.5 90.92 0 

Square 7 3370.8 481.54 9.22 0 

P1 ∗ P1 1 30.8 30.82 0.59 0.449 

P2 ∗ P2 1 556.3 556.3 10.65 0.003 

P3 ∗ P3 1 55.8 55.78 1.07 0.311 

P4 ∗ P4 1 123.7 123.68 2.37 0.136 

P5 ∗ P5 1 395.4 395.43 7.57 0.011 

P6 ∗ P6 1 131.9 131.95 2.53 0.124 

P7 ∗ P7 1 2027.7 2027.74 38.82 0 

2-Way Interaction 21 2053.1 97.77 1.87 0.065 

P1 ∗ P2 1 2.8 2.77 0.05 0.82 

P1 ∗ P3 1 19.7 19.70 0.38 0.544 

P1 ∗ P4 1 78.6 78.65 1.51 0.231 

P1 ∗ P5 1 21.9 21.87 0.42 0.523 

P1 ∗ P6 1 2.2 2.21 0.04 0.839 

P1 ∗ P7 1 1.5 1.50 0.03 0.867 

P2 ∗ P3 1 57.0 57.00 1.09 0.306 

P2 ∗ P4 1 8.0 8.01 0.15 0.699 

P2 ∗ P5 1 552.3 552.29 10.57 0.003 

P2 ∗ P6 1 24.0 23.97 0.46 0.504 

P2 ∗ P7 1 1.7 1.70 0.03 0.858 

P3 ∗ P4 1 73.6 73.55 1.41 0.246 

P3 ∗ P5 1 87.3 87.34 1.67 0.207 

P3 ∗ P6 1 0.4 0.42 0.01 0.929 

P3 ∗ P7 1 38.9 38.90 0.74 0.396 

P4 ∗ P5 1 10.7 10.72 0.21 0.654 

P4 ∗ P6 1 38.8 38.80 0.74 0.397 

P4 ∗ P7 1 13.9 13.89 0.27 0.61 

P5 ∗ P6 1 107.9 107.93 2.07 0.163 

P5 ∗ P7 1 107.5 107.48 2.06 0.163 

P6 ∗ P7 1 804.5 804.45 15.4 0.001 
. Conclusion 

The main novelty brought in this work was the proposal of an ap-
roach to enhance the operational quality of a real complex system
ased on the identification of the distance from the actual operational
onditions to the desired one, defined a priori by design. The Design
f Experiments - DoE approach organized a set of maneuvers based on
weeping controllable operational parameters along their secure range
f values. The system main responses were the flue gas outlet tempera-
ure, the steam generator efficiency, and the electric power generation.

In site experiments weren’t available and the system was modeled
ith an Artificial Neural Network - ANN. The ANN model presented
AE and MSE of 0.2015 and 0.2741 for the test data set, and MPE and
SE of 0.32% and 2.350 for validation, respectively. That combined
ethodology allowed to rank the operational parameters of the steam

enerator and mills, and pointed out that the coal mass flow rate as the
ost relevant parameter with respect to the flue gas outlet temperature,
hile the primary air pressure was the most important parameter for
oth the steam generator efficiency and the electric power generation. 

The present approach allows the identification of the controllable
arameter’s importance and its smooth-running range. It can also guide
9 
he power plant operator by helping him to understand and accurately
anipulate the right parameters in real-time, in order to achieve a new,

afe, stable, and more efficient condition. 
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ppendix A 

1. Analysis of variance 

In Table 6 DF, Adj SS, and Adj MS correspond to total degrees of free-
om, adjusted sums of squares, adjusted mean squares respectively. The
-value is a test statistic while the p-value is a probability that measures
he evidence against the null hypothesis. 
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A

dimensional plane with response isolines. Graphs are assembled by pairs of 
f

ctors for the response flue gas outlet temperature (R1). 
2. Contour plots 

The contour plots in Figs 12–14 display response surfaces as a two-
actors, while all others parameters are hold at their average values. 

Fig. 12. Contour plots of the pairs of combined fa
10 
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ctors for the response steam generator efficiency (R2). 
Fig. 13. Contour plots of the pairs of combined fa
11 
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